- PowerScore Staff
- Posts: 5972
- Joined: Mar 25, 2011
- Mon Nov 07, 2011 2:57 pm
#92477
Setup and Rule Diagram Explanation
This is a Grouping: Defined Moving, Balanced, Identify the Templates. game.
The game scenario indicates that six doctors are at exactly one of two clinics:
Because each doctor must be at either Souderton or Randsborough, this game features a two-value system. Thus, if a doctor is not at Souderton, he or she must be at Randsborough; if a doctor is not at Randsborough, he or she must be at Souderton. The two-value system leads to a number of interesting contrapositives. Ultimately, the game is sufficiently restricted to lead to four templates. First, let’s examine each rule, with the rule diagram presented first, followed by the contrapositive, which will be translated in order to account for the effects of the two-value system:
Of course, several of these rules and contrapositives can be combined, such as in the following:
In that process of linking the rules together, you might notice a curious feature of the relationships: the third rule can never be enacted. The third rule indicates that if L is at S, then N and P are at R. But from the fourth rule when N is at R, then O is at R, and from the fifth rule when P is at R, then ultimately O is at S. So, attempting to put N and P at R is impossible since it requires O to be at both clinics. Thus, we can draw one of the challenging inferences of the game: L can never be at Souderton, and thus L must always be at Randsborough. We can also ignore the third rule going forward since it is effectively dead.
With L assigned to R, there are only five variables remaining to track, and four active rules (all the rules except #3). Notably, O appears in three of the four "live" rules, making O very powerful. We can take the relationships a bit further, and make four templates based on O's placement, which ultimately reveal there are only six total possibilities:
This is a Grouping: Defined Moving, Balanced, Identify the Templates. game.
The game scenario indicates that six doctors are at exactly one of two clinics:
Because each doctor must be at either Souderton or Randsborough, this game features a two-value system. Thus, if a doctor is not at Souderton, he or she must be at Randsborough; if a doctor is not at Randsborough, he or she must be at Souderton. The two-value system leads to a number of interesting contrapositives. Ultimately, the game is sufficiently restricted to lead to four templates. First, let’s examine each rule, with the rule diagram presented first, followed by the contrapositive, which will be translated in order to account for the effects of the two-value system:
Of course, several of these rules and contrapositives can be combined, such as in the following:
In that process of linking the rules together, you might notice a curious feature of the relationships: the third rule can never be enacted. The third rule indicates that if L is at S, then N and P are at R. But from the fourth rule when N is at R, then O is at R, and from the fifth rule when P is at R, then ultimately O is at S. So, attempting to put N and P at R is impossible since it requires O to be at both clinics. Thus, we can draw one of the challenging inferences of the game: L can never be at Souderton, and thus L must always be at Randsborough. We can also ignore the third rule going forward since it is effectively dead.
With L assigned to R, there are only five variables remaining to track, and four active rules (all the rules except #3). Notably, O appears in three of the four "live" rules, making O very powerful. We can take the relationships a bit further, and make four templates based on O's placement, which ultimately reveal there are only six total possibilities:
You do not have the required permissions to view the files attached to this post.
Dave Killoran
PowerScore Test Preparation
Follow me on X/Twitter at http://twitter.com/DaveKilloran
My LSAT Articles: http://blog.powerscore.com/lsat/author/dave-killoran
PowerScore Podcast: http://www.powerscore.com/lsat/podcast/
PowerScore Test Preparation
Follow me on X/Twitter at http://twitter.com/DaveKilloran
My LSAT Articles: http://blog.powerscore.com/lsat/author/dave-killoran
PowerScore Podcast: http://www.powerscore.com/lsat/podcast/